1
$\begingroup$

$$\frac{1}{\log_{2x-1}{(x)}} + \frac {1}{\log_{x+6}{(x)}}=1+\frac{1}{\log_{x+10}{(x)}}$$ What should i do for the first step ?

Is it like $\frac{1}{A}+\frac{1}{B}$ then i simplify into $\frac{A+B}{AB}$ ? I need your help or hint to solving this equation. Thank you so much, sir.

$\endgroup$
1
  • 1
    $\begingroup$ Use $\log_a b=\frac{1}{\log_b a}$ $\endgroup$ Commented Oct 25, 2019 at 19:26

2 Answers 2

6
$\begingroup$

Remember - $$\log_{a}b = \frac{1}{\log_ba}$$

$\endgroup$
3
$\begingroup$

Hint: $$\log _ax = {\log x\over \log a}$$

So you have $${\log (2x-1)\over \log x}+{\log (x+6)\over \log x} = 1+{\log (x+10)\over \log x} $$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.